

Team: sdmay19-42 Advisor: Zhengdao Wang Client: Aamir Ahbab

Website: http://sdmay19-42.sd.ece.iastate.edu/

Problem Statement

• The Descarga Latin Dance Club on campus is having difficulties recording themselves and other members during performances.

• The main issue is that a camera man can be obtrusive on a dance floor and get in the way of the dancers themselves or other dancers that may or may not be on the floor at the same time.

• To solve this issue our client has hired us to design, build, and program an **autonomous quadcopter**. This quadcopter will be able to identify the target dancers and record them at a preset distance.

System Design

Constraints

• Flight Time

- Must be able to fly for at least 5 continuous minutes
- Budget
 - We are trying to keep the cost close to what team members contributed to the senior design pool
- Weight
 - An ideal thrust to weight ratio is 2:1 at full throttle that way the drone can hover at half throttle

Functional Requirements

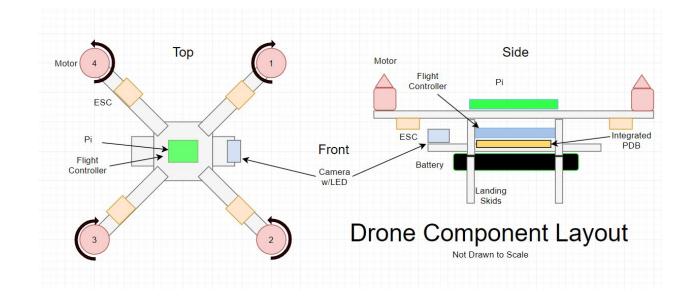
- Video Quality
 - 480p or better
 - 24 Frames per second or better
- Flight Control
 - Must be autonomous
 - Must prioritize user control over autonomy
- Image Recognition and Tracking
 - Drone must follow target for full performance
 - Drone must keep target in frame for full performance

Nonfunctional Requirements

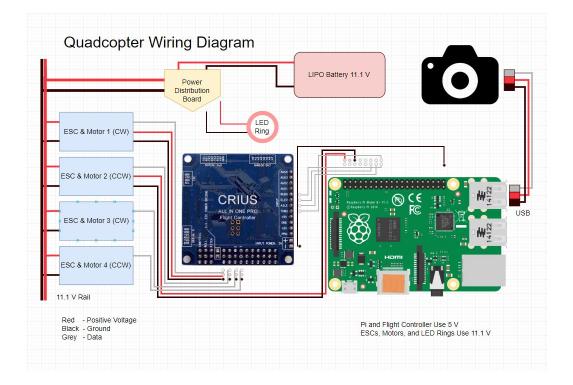
• Useability

- Fit for non-tech savvy people
- Responsiveness
- Reliability
 - Stability
 - $\circ \quad \text{Endurance} \quad$

Constraint - Thrust to Weight Ratio


				ML221	2 MOTO	R		
ltem NO.	Volts (V)	Prop	Throttle	Amps (A)	Watts (W)	Thrust (g)	Efficiency (g/W)	Operating temperature(℃)
ML2212 920KV			65%	5.1	56.6	460	8.1	
		APC10*4.5	75%	7.4	82.1	590	7.2	55°C
			85%	10.1	112.1	730	6.5	
			100%	13.4	148.7	860	5.8	

860(g) * 4 propellers at full throttle = 3,440 (g) of thrust


Our theoretical drone weight is 1,643.217(g) Achieves 2.09 : 1 Thrust to weight ratio

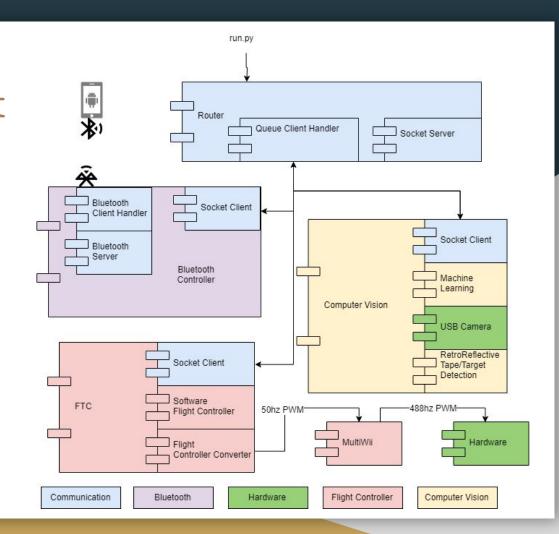
*Hovering should be achievable at ~59% throttle

Hardware Layout

Detailed Design

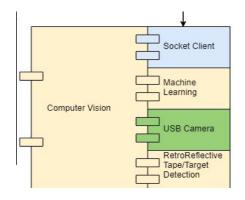
Cost Breakdown

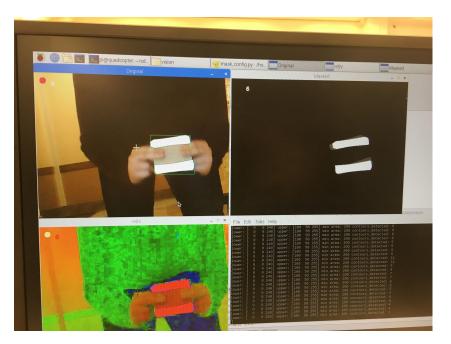
Internal Components	Model	Price
Processor	Rspbry Pi 3 Model B	\$34.99
PI power	KMASHI External Battery	\$10.99
Motor System		
Battery O-2	Gens Ace	\$56.05
Flight Controller	ZnDiy-BRY CRIUS All in One Pro	\$53.36
Power Distribution Board	Lumenier Mini 4	\$11.99
Motors	Gartt4 x 2212	\$135.72
ESC	Hobbywing Skywalker	\$0.00
Props	Ray Corp Gemfan	\$13.99
Video System		
Frame	JRLEC	\$16.90
Camera	Fosa USB Camera	\$8.99
MicroSD	Kingston 16GB	\$5.75
External Components		
Battery Charger	Passport P1 Mini (DYNC3015)	\$44.99
Total Cost		\$393.72


Additional Developmental Costs

- Used as replacements or to better test system
- Some items provided and paid for by client

Transmitter/Receiver	\$60
Ring LED + Tape	\$13
Propellers x 32	\$24
Wireless Bluetooth USB Port	\$13
Landing Skids	\$9


Software Layout


- Languages
 - Python 3
 - o Java
 - **C**
- Platforms
 - Android
 - Raspbian
 - Atmega2560 Microcontroller
- Benefits
 - Extensible
 - Maintainable
 - interoperability

Computer Vision

- Retro Reflective Tape
- USB Camera
- LED Ring
- Microprocessor (Raspberry Pi 3b+)

Target Detection Demo

Main Page	
◐ ◙ 🚯 👯 🎯 😤 ୱେଲା 83% 🖬 11:11	
Quad Copter Camera Man	
Welcome User to Senior Design Project Dev IMAGE USER	Developer Page

0 🖬 0 🖇 👀 🛜 🎬 📶 83% 🖻 11:11 Quad Copter Camera Man RIGHT LEFT UP DOWN FORWARD BACKWARD DISARM ARM Rotate CW CHANGE ROTATION TAKE OFF LAND CONNECT HOVER Not connected

Android Design -Mask Calibration

0 🖬 O	* 🔌 🚇 💈	₩₽5⊿11 83% 🖻 11:11									
Quad Copter Camera Man											
O Contour Size	O Lower Threshold	O Upper Threshold									
O Red	O Green	O Blue									
O Raise Value		wer Value									
	ENTER										
	CONNECT										
	CANCEL LAST										
	SAVE AND END										

Problems Encountered

Risks and Safety Measures

- Drone propellers and Motors Incorrectly set up or secured
 - Test motor spin and orientation before adding propellers
 - Eyewear
 - 3 members present when testing flight
- Drone crash or erratic flight
 - Manual override through ssh or user application
 - Teathers
 - Safety perimeter

Issues

- Multithreaded communication
 - Synchronous Message Module
- MultiWii Startup Sequence
 - Steps to activate ESC's and MultiWii software
- ESC Frequency/MultiWii
 - Confusion on how MultiWii worked and the need for a startup sequence
- Hardware Delivery
 - No hardware until end of Fall semester
- Propellers
 - Damaged/Destroyed

Current Flight Status

Can get airborne, trims appropriately, and can be controlled manually sticks

Problem Surrounding Roll Accelerometer

GUI shows minimum value indicating the drone is rotated 90 degrees on its side
Not sure if this is a broken piece hardware or a GUI issue
We've had issues with both
A controlled untethered flight test of the drone lead to crash
We suspect either a trim issue or an overcorrection PID in response to the faulty sensor

Project Results

Testing

Software

- Test Flight Controller Input/Output
- Test Router Module
- Test Computer Vision
- Test Android Communication

Hardware - Incremental Functional Testing

- Multiwii GUI
- Flight Controller Output
- Pi Output
- Motors Spin Up
- Motors Respond Appropriately
- Manual Tethered Flight
- Manual Untethered Flight

Hardware Results

- Manual Flight Achieved
 - Transmitter
 - Bluetooth Commands
- Unstable Flight
 - Cyclical Overcorrection
 - \circ Trimming
- Props damaged or destroyed during testing
 - Prevented further development and testing

Drone Flight

Conclusion

Schedule

N					Stage 1 Stage 2										Stage 3 Stage 4																									
	Septer	mber			Octo	ober			November				December			January					Feb	ruary		March					April					١	May					
W1	W2	W3	W4	W1	W2	W3	W4	W	1 W2	W3	W4	W1	W2	W3	W4	W1	N	V2 V	/3	W4	W1	W2	W3	3 W4	W1	W.	2 V	N3	W4	V	V1	N2	W3	W4	W1	W2	W	3 W4		
	Resea	arch			Single Target Tracking Single Target Following										Multi Target Following																									
E	Brain St	orming					Base	e App	p								Har	rdware/S	ware/Software Integration																					
									Build	Drone		1.00										Drone-App interaction																		
34 15				4 2							Res	search D)ata She	eets							9																			
Documentation																																								
																							На	ardware/S	oftware	Integ	gration	1 (Tes	ting)											
							Sing	gle Ti	Farget Trac	king (Tes	sting)											Single Target Tracking (Testing)											-							
				3 8		8		Ba	ase App (T	esting)						94					9. 				Singl					Single Target Following (Testing)										
																														Multi Target Following (Testing)					owing	ving				
				Drone-App Interaction (Testing)																																				
24		5.2.5				125		100	25	76)		574	497			99X									16.1						100				984					

Results

Metric	Goal	Result							
Flight Time	≥ 5 minutes	Unable to obtain							
Budget	<u><</u> \$550	\$512							
Film Quality	-	-							
Resolution	<u>></u> 480p	480p easily upgraded							
FPS	<u>></u> 24 fps	19 fps							
Flight control	Autonomous and Stable	Manual with Issues							
Image Recognition and Tracking	Identify, Track, and Follow Multiple Targets	Identify and Track Single Target							
Thrust to weight ratio	2 : 1	>2 : 1							

Project Achievements

- Hardware
 - Flight Controller can talk to pi and ESCs
 - PDB distributes sufficient power to each component
 - Manual flight achieved

- Target Tracking
 - Camera is able to detect target via retroreflective tape
 - Distance and angle calculations available for further use in drone movement
 - Target Detection can be configured for different ambient lightings

- Android Application
 - Developer UI
 - Sends commands to pi
 - Remote control available
 - Image Alteration
 - Receives image and sends commands to Pi for alteration

Lessons Learned

- Order equipment ASAP
 - Flight Controller
 - Propellers
- Research
 - Explore others' ideas and not just our own
- We were ambitious with scope

- Integrating the individual project components was our easiest part
- Each learned new technologies

Suggestions for improvement

Lessons learned and future suggestions

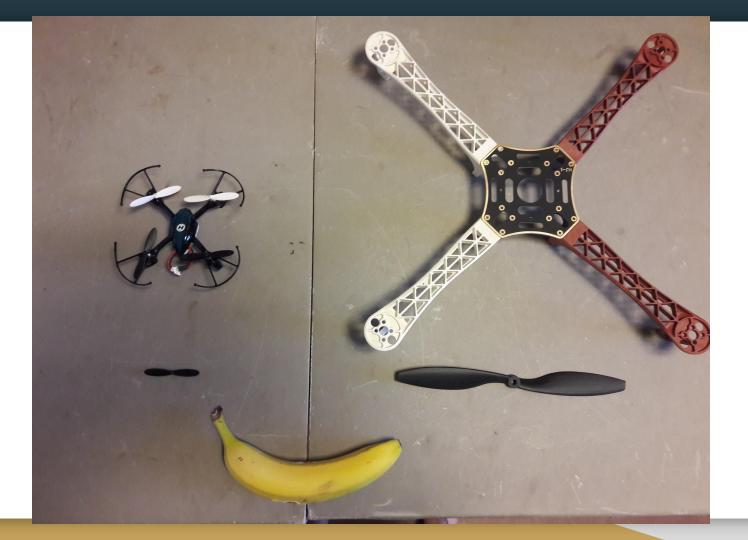
- Hardware Upgrades
 - Camera Higher resolution
 - Camera More Compatible with Raspberry Pi
- Have spare parts
 - Propellers
 - Drone legs
- Refactor Communication to encode commands
 - No need for commands to be human readable.

Contributions

Luke

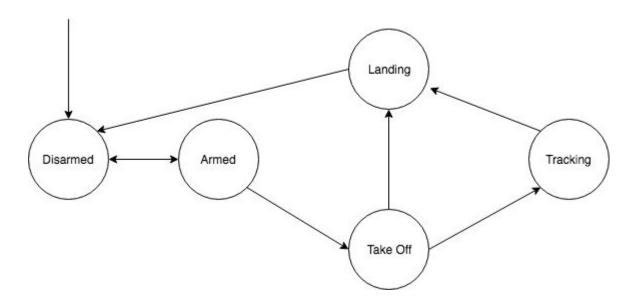
- Android App
- Drone Communications
- Facial Encoding

Nate


- Image Utility Libraries
- Retro Reflective Target Detection
- ML Target Distance Estimation

• Alex

- Physical Drone R&D
- Multiwii Code
- Physical Domain Elicitation


Isaac

- Android App
- Drone Communications
- Aamid
 - Hardware Design
 - Physical Drone R&D

State Machine Diagram

Start

Questions?